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ABSTRACT 
It has been a great challenge to optimize the growth conditions toward structure-controlled growth of single-wall carbon nanotubes 
(SWCNTs). Here, a high-throughput method combined with machine learning is reported that efficiently screens the growth conditions for 
the synthesis of high-quality SWCNTs. Patterned cobalt (Co) nanoparticles were deposited on a numerically marked silicon wafer 
as catalysts, and parameters of temperature, reduction time and carbon precursor were optimized. The crystallinity of the SWCNTs 
was characterized by Raman spectroscopy where the featured G/D peak intensity (IG/ID) was extracted automatically and mapped 
to the growth parameters to build a database. 1,280 data were collected to train machine learning models. Random forest 
regression (RFR) showed high precision in predicting the growth conditions for high-quality SWCNTs, as validated by further 
chemical vapor deposition (CVD) growth. This method shows great potential in structure-controlled growth of SWCNTs. 
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1 Introduction 
Structure-controlled synthesis is essential to achieve the excellent 
physical and chemical properties of single-wall carbon nanotubes 
(SWCNTs) and to realize their practical applications [1]. This 
requires optimizing the growth conditions to controllably 
synthesize SWCNTs with targeted structures and properties. 
For the typical chemical vapor deposition (CVD) synthesis of 
SWCNTs, there are at least 12 growth parameters: composition 
and size of catalyst particles (2), composition and flow rate of 
carbon precursors (2), type and flow rate of carrier gases (2), 
promotor gases and flow rate (2), pretreatment and growth 
temperatures (2), pretreatment and growth time (2). If 10 
conditions are tried for each variable, there will be a huge 
parameter space with 1012 possible combinations. The traditional 
trial-and-error process to find the optimum growth conditions is 
extremely time-consuming, because of the complex, non-linear, 
cross-related, high dimensional parameter space. Theoretical 
calculations and simulations have been used to understand the 
growth mechanism [2–4], but it is impractical to model the 
whole growth process of SWCNTs, with various reactions 

coupled with multiple times and length scales. 
In recent years, big data-based information technology, 

especially machine learning, has become a new scientific paradigm 
and a powerful tool to tackle complex problems, and has been 
applied to accelerate the development of new materials [5]. To 
optimize the growth parameters of CNTs, combinatorial methods 
[6–9] and autonomous growth systems [10, 11] have been 
reported. Noda et al. reported the fabrication of catalyst libraries 
with continuously varying compositions to search for the 
optimum growth condition of SWCNT arrays [12–14]. Mirkin 
et al. combined polymer pen lithography and ink spray-coating 
to prepare nanoscale Au-Cu libraries and to screen the active 
compositions for SWCNT growth [15]. On the other hand, 
machine learning has been used to model CNT growth [16–18]. 
Nasibulin et al. trained an artificial neural network (ANN) to 
fit the growth conditions to the yield, diameter, and the 
intensity ratio of the graphitic G-band to disorder-related D-band 
(IG/ID) of produced SWCNT films [18]. Recently, Maruyama 
et al. reported an attractive concept of “robot scientist”, where 
growth experiments could be conducted autonomously so that 
the structure could be analyzed and then fed back to machine 
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learning algorithm for further optimization [11, 16, 19]. By 
combining microscale pillar arrays, in-situ Raman characteri-
zation, and automated control, over 100 experiments were 
conducted in a single day. Experimental conditions such as 
growth temperature and flow rate of gases were effectively 
screened for selective growth of single- and multi-wall CNTs [11] 
or maximizing CNT growth rates [16, 19]. 

In this study, we have developed a high-throughput method 
coupled with machine learning to optimize the growth of 
high-quality SWCNTs. Numerically indexed catalyst patterns 
were discretely deposited on silicon wafers to grow SWCNTs 
from nanoparticles (NPs) with different sizes. By Raman 
mapping and automatic IG/ID extraction, a database of 1,280 was 
generated, one order larger compared to the datasets in previous 
reports [11, 16, 18]. This larger database overcomes the data scale 
barrier and enables accurate machine learning and prediction 
of the correlation between the growth conditions and the 
quality of SWCNTs. 

2  Results and discussion 
Within the huge parameter space, apparently, it is impractical 
to search for an optimized condition using an exhaustive 
approach and it is necessary to start from the most influential 
variables. In a typical CVD growth process of SWCNTs, carbon 
precursors are catalytically decomposed on the surface of 
catalyst NPs. Carbon atoms are then dissolved and diffused in 
the catalyst NPs. After becoming oversaturated, SWCNTs are 
nucleated and grown from the NPs as growth seeds [20]. In 
this study, SWCNTs were grown using Co as the catalyst and 
ethanol as carbon precursor, where the size of the Co catalyst 
NPs, growth temperature, reduction time, and flow rate of 
carrier gas through ethanol were selected as variables for 
optimizing the quality of SWCNTs. The workflow is shown 
in Fig. 1, including (a) high throughput CVD growth from 
catalyst patterns with a gradient in thickness, (b) Raman 
characterization of SWCNTs to build a database, (c) modeling 
of the growth parameters and SWCNT crystalline quality by 
using machine learning, and (d) validation of the predicted  

 
Figure 1  Workflow of high throughput screening and machine learning. 
(a) High throughput CVD growth of SWCNTs from numerically indexed 
catalyst patterns. The red numbers from 1 to 64 represent the marks on 
the silicon wafer. The black numbers ranging from 0 to 1.575 represent 
the deposited thicknesses of Co film (nm). (b) Construction of a database 
linking the growth parameters to the quality of the SWCNTs characterized by 
Raman (IG/ID) measurements. (c) Machine learning model with a plot of 
the experimental and predicted IG/ID. (d) Experimental validation of the 
predicted optimum growth conditions. 

optimum growth conditions by CVD growth on common Si 
wafers. 

2.1  High-throughput growth 

A quaternary combinatorial masking method [21] was used to 
prepare the discrete, numerically indexed Co catalyst patterns. 
A total of 64 catalyst patterns were generated in an array on 
a numerically marked silicon wafer by ion-beam sputtering 
deposition, and their nominal thicknesses were in the range of 
0–1.575 nm with a step of 0.025 nm (Fig. S1 in the Electronic 
Supplementary Material (ESM)). After annealing under hydrogen 
atmosphere, the Co films were transformed to discrete NPs. 
Atomic force microscopy (AFM) images show that the sizes 
of catalyst NPs have a Gaussian distribution (Fig. S2 in the 
ESM), showing average sizes of 1.1, 2.2 and 4.2 nm for the Co 
films with nominal thicknesses of 0.025, 0.200 and 1.000 nm, 
respectively. During CVD growth, the growth temperature, 
reduction time and flow rate through ethanol were changed 
as variables. A scanning electron microscopy (SEM) image 
(Fig. S3(a) in the ESM) shows that the grown SWCNTs   
are confined within the catalyst patterns with their digital 
identification clearly resolved, so that the characterization results 
could be related with the growth conditions to construct a 
database. In a higher magnification SEM image (Fig. S3(b) 
in the ESM), we can see that the nanotubes form a uniform 
network. Transmission electron microscopy (TEM) images 
(Figs. S3(c)–S3(e) in the ESM) confirm that the SWCNTs 
possess high crystallinity with long and straight walls.  

2.2  Raman characterization 

Raman spectroscopy was used to characterize the quality of 
the grown SWCNTs by calculating IG/ID [22]. Figure 2(a) shows 
a map of G-band intensity, where the brightness indicates the 
density of the SWCNTs. The Raman mapping patterns are 
consistent with the SEM observations (Fig. S3(a) in the ESM). 
Three representative results were further analyzed, with the 
G-D Raman spectra shown in Figs. 2(b)–2(d) and corresponding 
SEM images in Figs. 2(e)–2(g). When the catalyst film thickness 
increased from 0.025 to 0.2 nm, the density of SWCNTs 
increased, and the average IG/ID was increased from ~ 8 to 
~ 102 (Figs. 2(b) and 2(c)). When the Co film thickness was 
further increased to 1 nm (Fig. 2(d)), the SWCNT density 
decreased, and nanotubes were mainly observed along the 
edges. To avoid such “edge effects”, average IG/ID from the inner 
area (0.6 mm × 0.6 mm) was mapped to the growth condition 
and used for further machine learning. 

The Raman spectra in the radial breathing mode (RBM) 
region corresponding to Figs. 2(b)–2(d) are shown in Fig. S4 
in the ESM. When the thicknesses of catalyst films are 0.025, 
0.2, and 1 nm, the numbers of RBM peaks under the 532 nm 
laser are 26, 125, and 18, respectively. Therefore, there is an 
optimum Co catalyst thickness for the growth efficiency that 
is closely related to the number of observed RBM peaks. In 
addition, the positions of the RBM peaks down shifted to lower 
wavenumbers (ωRBM), indicating an increase of tube diameter 
(d ≈ 248/ωRBM) with the increase of catalyst film thickness. 
More detailed statistical analysis on the G-D and RBM peaks 
for a high throughput experiment (Fig. 2(a)) is shown in 
Fig. S5 in the ESM, where the IG/ID, RBM peak number, 
mean diameter and percentage of semiconducting SWCNTs 
(s-SWCNTs) are plotted against the thickness of Co film. The 
number of RBM peaks and IG/ID values have similar trends 
with the increase of thickness of Co film, indicating a higher 
yield of SWCNTs in the high-quality samples. With the increase 
of Co catalyst thickness, a general trend of increased tube 
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diameter was observed. In addition, the percentage of s-SWCNTs 
was found to be related to the thickness of Co film, revealing a 
fluctuating pattern. The observed dependence of RBM modes 
on the growth parameters shows the potential of applying our 
method in controlled growth of SWCNTs. 

2.3  Modeling of SWCNT growth using machine learning  

The features of the Raman spectra, i.e. average IG/ID, were then 
extracted automatically to relate to the growth conditions to 
construct a database. In total, 1,280 different growth conditions 
and corresponding Raman spectra were collected from 20 
growth batches (Fig. S6 in the ESM). Statistical analysis of the 
growth parameters and measured IG/ID values are presented 
in Figs. S7 and S8 in the ESM. Growth parameters are set as 
follows: The nominal thicknesses of Co film are distributed 
uniformly from 0 to 1.575 nm, the growth temperature ranges 
from 800 to 950 °C, the reduction time from 3 to 10 min, and 
the flow rate through ethanol from 20 to 100 sccm (Fig. S7 in 
the ESM). Only ~ 8.3% and ~ 0.3% of the IG/ID values are 
higher than 60 and 100, respectively (Fig. S8 in the ESM). Such 
distribution shows the existence and sensibility of the optimum 
growth conditions for the high quality SWCNTs. 

For modeling of SWCNT growth using machine learning, 
IG/ID was used as the output target and four growth conditions 
were set as descriptors, including the thickness of Co film, 
growth temperature, reduction time and flow rate through 

ethanol. Supervised linear regression (LR) and nonlinear 
regression models, such as support vector regression (SVR), 
random forest regression (RFR) and ANN were implemented 
comparatively to find the most suitable algorithm to predict 
the growth conditions for high-quality SWCNTs. 20% of the 
dataset was randomly withheld for testing and the other 80% 
was used for training. During the SVR, RFR and ANN models 
training, a grid search method was carried out to optimize 
the hyperparameters (Table S1 in the ESM). In addition, the 
robustness of the trained models was evaluated by 10-fold 
cross validation (CV) [23] on the training data. 

The coefficient of determination (R2), root-mean-square 
error (RMSE) and mean absolute error (MAE) were used as 
metrics to evaluate the performances. For an accurate model, 
R2 should be close to 1, and RMSE and MAE should be small. 
Table 1 summarizes the performance of the trained machine 
learning models. Nonlinear regression models, SVR, RFR and 
ANN, show much higher accuracy in predicting IG/ID than the  

Table 1  Performance of the machine learning models  

Model RMSE MAE R2 
LR  16.22 12.23 0.20 

SVR 8.45 5.84 0.78 
RFR  6.25 4.57 0.88 
ANN  7.72 5.62 0.82  

 
Figure 2  High-throughput Raman characterization. (a) G band intensity mapping of the SWCNTs, with the brightness indicating the growth efficiency.
(b)–(d) G and D bands of the Raman spectra of the SWCNTs grown from Co catalysts with nominal thicknesses of 0.025, 0.2, and 1 nm. (e)–(g) SEM 
images of the SWCNTs corresponding to (b)–(d). 
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linear regression model indicating a non-linear relationship 
between the growth parameters and the IG/ID values of the 
SWCNTs. IG/ID can be best predicted using RFR with the 
highest R2 value of 0.88 and the lowest RMSE and MAE 
values. And the RFR model achieved the highest CV score of 
0.83 (Table S2 in the ESM), indicating that RFR is a suitable 
algorithm to model the relation of growth parameters and 
quality of SWCNTs. 

Figure 3(a) shows the IG/ID values from experiments and 
from predictions using the RFR model. Most of the predicted 
data points are located close to the y = x line, indicating that 
the general trend and relation of the growth parameters to the 
quality of the SWCNTs is captured by the model. The error for 
the higher IG/ID values (≥ 60) is larger, with the predicted 
values lower than the experimental ones. One possible reason 
is that there are fewer data points in the high IG/ID region (Fig. S8 
in the ESM). One advantage of RFR is that the relative 
importance of input descriptors can be obtained by replacing 
each descriptor with random values and measuring the change 
of performance [24]. Figure 3(b) shows the calculated importance 
of the growth parameters for controlling the quality of the 
SWCNTs. The thickness of Co film appears to be the most 
important parameter followed by the growth temperature, 
flow rate through ethanol and reduction time. It seems that 
the growth time was not as influential as other parameters, as 
shown by the ranking of importance from the modeling 
including growth time as a variable (Figs. S9 and S10 in the 
ESM). Therefore, the growth conditions were optimized at a 
fixed growth time of 5 min. 

Generally, the growth of CNTs involves (1) catalytic decom-
position of carbon precursors, (2) dissolution and diffusion of 
carbon atoms, and (3) nucleation and growth of CNTs. All 
three steps are thermally activated; therefore, the temperature 
is important to provide sufficient thermal energy. The thermo- 
dynamical properties of carbon precursors determine the  

 
Figure 3  Modeling of SWCNT growth by using machine learning. (a) IG/ID 
values from experimental measurements and predictions from the RFR 
model. Red circles and blue triangles are predicted IG/ID values using 
the training and testing sets, respectively. (b) Ranking of the calculated 
importance of growth parameters for controlling the quality of SWCNTs. 
tCo: thickness of Co film. T: growth temperature. C: flow rate through 
ethanol. tR: reduction time. 

decomposition and supply of carbon atoms. Only when the 
thermodynamical and kinetical conditions are optimized, and 
the mass transport through the three stages is balanced, CNT 
growth with high yield and high quality occurs. Among the 
growth parameters, the role of the catalyst NPs is essential. In 
the 1st step, the catalytic activities affect reaction rate. In the 
2nd step, the solubility and diffusion rate determine the carbon 
transport. In the 3rd step, the catalyst NPs are the templates 
for CNTs nucleation and growth. The central role of the catalyst 
is consistent with previous success of controlled synthesis of 
CNTs by catalyst design [25–27]. Such a sequence of importance 
is consistent with the prior knowledge about SWCNT growth, 
suggesting that the RFR model can indeed “learn” and capture 
the relations between the growth parameters and the IG/ID 
values rather than just memorizing and interpolating the 
training data.  

The trained RFR model was used to further explore the 
parameter space for the optimum growth conditions for 
high-quality SWCNTs. IG/ID values were predicted using the 
RFR model for 38,016 combinations of growth parameter, as 
shown in Table S3 in the ESM. Figure 4 shows the predicted 
IG/ID values of SWCNTs with catalyst thickness as the primary 
variable and growth temperature, reduction time and flow rate 
through ethanol as secondary variables. For each combination 
of growth parameters, there is an optimal range (IG/ID ≥ 60): 
0.2–0.4 nm of Co film thickness, 880–920 °C of growth 
temperature, 5–8 min of reduction time, and 30–40 sccm of 
flow rate through ethanol. 

2.4  Experimental validation 

The optimum conditions for the growth of high quality 
SWCNTs were obtained from the predictions of the RFR 
model, as shown in Table S4 in the ESM. Such predictions 
were verified by further CVD growth. Figure S11 in the ESM 
shows the Raman spectra of the SWCNTs grown with the 
predicted growth parameters. All the average experimental 
IG/ID values are larger than 80, confirming the validity of the 
predictions for high quality SWCNTs. The average IG/ID values 
are in the range from ~ 83 to ~ 138, which is larger than the 
range of the predicted ones (96–101), indicating the sensitivity 
of the SWCNT quality to the specific experimental conditions. 
The measured and predicted IG/ID values are in agreement 
for 5 out of the 6 validation experiments, with the RMSE and 
MAE calculated to be ~ 10 and ~ 8, respectively. For the other 
predicted condition, the experimentally measured IG/ID value 
(~ 138) is substantially higher than the prediction (100). Thus 
there may be some overfitting of the RFR model to the training 
data, but it is general enough for the prediction of optimal 
conditions for high quality SWCNT growth. 

 
Figure 4  Predicted Raman IG/ID of SWCNTs using RFR model. (a)–(c) Dependence of IG/ID on the thickness of Co film as a primary variable and (a) growth
temperature, (b) reduction time, and (c) flow rate through ethanol as secondary variables.  
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2.5  Enhanced optimization efficiency  

By combining the high throughput method with machine 
learning, the efficiency of optimizing the growth conditions of 
high-quality SWCNTs has been dramatically improved (Table S5 
in the ESM). We can see that the total time for a high- 
throughput experiment is around 4 h, where half of the time 
is spent on Raman mapping. Up to 4 experiments could be 
done within 1 day to get 256 growth conditions, and more 
than 1,000 growth conditions could be tested within a week. 
After collecting the data, the RFR model can be trained in a 
few minutes to obtain the optimum growth conditions. 

3  Conclusions 
We have developed a high-throughput method coupled with 
machine learning for the efficient optimization of the growth 
parameters of high-quality SWCNTs. The high throughput 
method includes the preparation of discrete catalyst patterns, 
CVD growth, Raman characterization and automatic IG/ID 
extraction. Machine learning was implemented to model the 
relationship of the growth parameters to the quality of the 
SWCNTs. By comparing typical regression models, the RFR 
model shows the highest performance with a coefficient of 
determination (R2) value of 0.88. The predicted optimum 
growth parameters from machine learning were further validated 
to achieve a high IG/ID value of 138 in conventional CVD 
growth process. The efficient modeling, predicting, and learning 
ability of the combined high-throughput and machine learning 
method in this work shows the potential to speed up the 
controlled synthesis of SWCNTs with specific structures and 
properties. 

4  Methods 

4.1  Fabrication of numerically marked catalyst patterns  

Three quaternary masks (Fig. S1(a) in the ESM) were used 
sequentially for depositing catalyst patterns of 64 (43) different 
thicknesses on a numerically marked Si/SiO2 wafer (Fig. S1(b) 
in the ESM). An ion-beam sputtering (Gatan model 681) was 
used to deposit the catalyst films at room temperature with a 
deposition rate of ~ 0.3 nm/min. The averaged deposition 
rate was calculated by measuring the thickness of Co film 
from 10 min deposition. Figure S1(c) in the ESM schematically 
illustrates the masks (A, B and C) used to generate the Co 
catalyst patterns. The steps for depositing the Co catalyst 
patterns are as follows A1: 0 nm; A2: 0.4 nm; A3: 0.8 nm; A4: 1.2 nm; 
B1: 0 nm; B2: 0.1 nm; B3: 0.2 nm; B4: 0.3 nm; C1: 0 nm; C2: 
0.025 nm; C3: 0.05 nm; and C4: 0.075 nm. As a result, an array 
of 64 numerically indexed Co catalyst patterns, each with a 
size of 0.8 mm × 0.8 mm, spaced 0.4 mm apart, was prepared 
on a marked silicon wafer (Fig. 1(a)). 

4.2  Growth of SWCNTs 

A quartz tube reactor with an inner diameter of 2.5 cm was 
used to grow the SWCNTs. To activate the catalyst, the Co 
catalyst patterns were annealed at 500 °C in air for 10 min. 
After the furnace was heated to the growth temperature of 
CNTs under argon (Ar) flow, the Ar was turned off and then 
the catalyst film was reduced under 200 sccm H2 to form NPs. 
Afterwards, a flow of Ar carrier gas through an ethanol 
bubbler (in a 30 °C water bath) as the carbon source and 
100 sccm H2 were introduced to grow SWCNTs for 5 min. 
The furnace was then cooled to room temperature under 
Ar flow.  

4.3  Characterization 

The size distribution of the catalyst NPs after reduction was 
characterized by an AFM (Bruker MultiMode 8-HR) operated 
in the tapping mode. The morphology of the SWCNTs was 
characterized by SEM (Nova Nano SEM 430 and Verios G4 
UC) with an acceleration voltage of 1 kV. The structure of the 
SWCNTs was characterized by a TEM (FEI Tecnai F20). The 
quality of SWCNTs was characterized by a Raman spectrometer 
(Jobin Yvon HR800), excited by a 532 nm He-Ne laser with 
spot size of ~1 μm2, and a mapping step of 0.1 mm. The Raman 
spectra in the RBM region were collected under both the 532 and 
633 nm lasers. The Raman data were cleaned by normalization, 
removal of universal noise and subtraction of the baseline, 
using LabSpec 5 software from Horiba. An Excel template was 
designed to automatically extract the averaged intensities of 
the D (ID) and G bands (IG) from each patterned catalyst area, 
and to construct a database mapping the growth parameters to 
the IG/ID values.  

4.4  Machine learning model 

Machine learning was used to model and predict the crystal-
linity of the grown SWCNTs under a combination of growth 
parameters. The learning process is summarized as follows:  

1. Dataset: collect data from 1,280 growth conditions and 
Raman spectra. 

2. Modelling: map growth conditions to IG/ID, by training 
and testing. 

3. Prediction: calculate IG/ID of ~ 104 new conditions using 
the trained model. 

4. Validation: CVD growth of SWCNTs under predicted 
optimum conditions and measurement of the IG/ID by Raman 
spectroscopy. 

Python’s scikit-learn package [28] (version: 0.22.1) and 
Keras API [29] (version: 2.3.1) were used to build the machine 
learning models. A min-max scaler was used to normalize the 
input parameter values to the (0,1) range during the construction 
of the LR, SVR and ANN models. 

ANN is a parallel interconnected network which can map 
the connection of the features to output target in the network 
and calculate the prediction under new conditions [30]. The 
hidden layers of the ANN model were optimized by a trial- 
and-error method and set to 3 hidden layers with 512, 256, 
128 neurons, respectively. Relu (Rectified linear unit) [31] and 
Adam [32] were used as activation function and optimizer, 
respectively. After building the ANN architecture, the batch 
size and number of epochs were adjusted to improve the 
predictions. By using a grid search method, the optimum 
batch size and number of epochs (Table S1 in the ESM) were 
500 and 3,000, respectively. 

Support vector machine (SVM) uses a kernel function to 
project input data onto a higher dimensional space and then 
calculate a hyperplane to classify training data with largest 
margin between the classes for classification problems or fit 
training data to the hyperplane for regression problems [33]. 
In this work, Gaussian radial basis function (RBF) was used as 
the kernel function. Two user dependent parameters, C and γ, 
were tuned to improve the predictions. By using a grid search 
method, the optimal C and γ (Table S1 in the ESM) were 10 
and 100, respectively.  

Random forest (RF) is an ensemble of classification or 
regression trees through bootstrap sampling and random 
feature selection [24, 34]. The prediction is determined by 
majority vote for classification or averaging for regression, of 
the predictions from all trees in the forest. To simplify the RFR 
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model, only the number of trees was adjusted while other hyper 
parameters were used as follows: criterion = “mse”, max_depth = 
None, max_features = “auto”, min_samples_leaf = 1, min_samples_ 
split = 2. By using a grid search method, the optimized RFR 
model was constructed by an ensemble of 800 regression trees 
(Table S1 in the ESM).  
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